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Abstract—Integrating environmental and health information
in the authentication and authorization processes is challenging
in the Internet of things (IoT) systems using only wireless radio
communications. Recent research plans for IoT future networks
shed light on the need for developing new authentication tech-
niques suitable for health care and environmental use cases.
To this end, we propose a novel molecular keys (MKs)-based
authentication system that uses molecules as data carriers while
considering the receiver’s types, concentration, and arrival time.
To facilitate our proposal, we built a MK generator and detector.
The system achieved a decoding accuracy of 86% for sending bit
sequences within a distance of 1m. The proposed method can also
accommodate dynamic authentication and authorization changes
across time and places, emerging marketing applications, and
evolving human activities.

Index Terms—Internet of things (IoT), Molecular communica-
tion, authentication, authorization, molecular keys.

I. INTRODUCTION

Information and communication technology have passed
through several tremendous leaps throughout the previous
decades. In this regard, we have witnessed a notable evolve-
ment of the wireless communication networks from voice-
based networks passing by data-based networks and reaching
now the age of object-based networks. The current Internet-
of-things (IoT) networks merge physical and digital environ-
ments, which requires several characteristics such as connec-
tivity, heterogeneity, flexibility, scalability, self-organization,
limited resources, sensing, and intelligence. Thus, the asso-
ciated authentication and authorization techniques should be
dynamic where continuous mentoring and user interactions
analysis are necessary to re-validate the connected nodes’
legitimacy. It is worthy to note that extracted featured data
can not only be digital data, but it can also be environmental
and body-related data [1].

Authentication is the process or action of verifying the
identity of a user, process, or entity. To perform authentication,
the user needs to supply evidence to support its identity claim,
with every piece of the evidence called a factor. The most
traditional yet commonly used authentication factor is the
password, which is a string that only the user knows. Based on
the source, authentication factors can be classified into three
categories: knowledge (something the user knows, such as
password, PIN, and SMS code), ownership (something the user
has, such as USB security token and RFID smart card), and

inherent characteristics (user’s features, such as fingerprint,
iris, and typing pattern). Besides using only one factor for
authentication, multiple factors can also be used together to
improve security. In multi-factor authentication, any missing
or incorrect factor will cause the authentication process to fail;
thus, the identity is only verified when all factors are correctly
applied [2].

Although multiple authentication factors have been cre-
ated to accommodate different use cases, they struggle to
incorporate environmental and human health information. For
example, in industrial biochemistry, current authentication
methods are used to limit entering specific labs or areas to
avoid contamination. However, individuals may be subjected
to undesirable substances due to leakage or contamination, for
example. Thus, we need a compatible authentication factor to
detect such cases, which cannot be achieved using electro-
magnetic (EM) based communication systems such as RFID,
smart cards, and others. Recently, the Internet working group
highlighted the need to establish new authentication methods
in IoT networks while preparing for the 6G standarization.
Specifically, they highlighted some use cases such as health
care monitoring including breathing/heart rate detection [3].
Such cases require developing unconventional compatible au-
thentication techniques that are suitable for physical world
interaction. While EM-based communication systems are hav-
ing difficulties interacting with the physical world, molecular
communication (MC) uses molecules to carry information
[4]; thus, it can work efficiently with several physical and
biological environments [5].

Authentication via molecular keys (MKs) allows utilizing
environmental/health information to design a biocompatible
security system and launch enhanced services. Indeed, moti-
vated by the dynamic changes of authorization across time
and places, emerging marketing applications, and evolving
human activities, it is beneficial to consider another level
of authentication across a molecular network. MKs can be
naturally chosen from a specific environmental molecular
structure or a volatile organic compound (VOC) associated
with a human health and activity [6], [7]. Moreover, the
MKs can be artificially generated to support several everyday
applications. Throughout the rest of this paper, we design and
build an MK generator and detection system to be imple-
mented as a side authentication factor. We build the prototype



using a programmable VOC sprayer to generate molecular
sequences that can be detected using a photoionization detector
(PID) that are suitable for industrial environment. Then, we
extensively evaluate multiple Machine Learning (ML) and
Deep Learning (DL) classification models with different data
normalization and feature engineering combinations to decode
the transmitted MKs.

II. MOLECULAR AUTHENTICATION: OPPORTUNITIES AND
CHALLENGES

This section discusses possible applications motivated by
the unique features and advantages of the proposed MK-based
authentication. Then, we highlight some challenges that should
be addressed in future system implementations.

A. Potential Use Cases
Biochemical Applications. Although it is possible to im-

plement the existing authentication methods to grant or deny
access based on visited industrial locations, it is not possible
to use the contact of a specific substance to trigger these radio-
frequency-based systems. However, by integrating appropriate
MC detectors, such as PID, into handheld devices, the system
can monitor the nearby biochemical compounds and use
the predefined MKs (type and concentration) to check the
authentication and grant permission.

In several industrial locations, it is either unsafe to use
radio-frequency-based systems to avoid hazards (e.g., fire) or
inadequate to use them in some environments such as tubes.
Therefore, generating artificial compatible MKs with appro-
priate fluid flows can safely authenticate industrial processes
and deal with different chemical substances.

Human-centric Applications. Human health and dietary
habits can be easily monitored by the exhaled VOC [6]; thus,
we can use the proposed MKs-based systems for authentica-
tion and monitoring daily human activities. For example, the
system can limit some human activities if the alcohol level in
the breath exceeds a specific threshold. Moreover, the exhaled
VOC profile can be studied, trained, and used to identify
viral infection particles and possibly use such information to
develop pandemic mitigation authentication policies. Also, the
system can allow practicing sports or using gym equipment if
the health condition is suitable based on the exhaled VOC
measurements.

Marketing Industrial Applications. It is possible to use
MKs for marketing purposes to register rewards, which can
be used to get benefits such as accessing high-speed networks
and special VIP zones. Specifically, since all marketing malls
use air fresheners, we propose using artificial MKs impeded in
them. Then, the customers can collect the keys by visiting the
stores or specific supermarket lanes, which requires spending
more time thanks to the slow propagation features of MC
channels. Thus, the merchants can have more chances to show
their goods and attract customers.

B. Implementation Challenges
To implement the MKs-based systems in our everyday life

applications, we should build a robust system that can operate

under different conditions and mitigate several challenges. In
the following, we summarize the main issues that can impede
the implementation of the proposed system.

Dynamic Environments. The system can be affected by
ambient environmental circumstances such as ventilation, in-
terfered VOCs, and pedestrian flows, which should be con-
sidered in system modeling. Also, appropriate system imple-
mentation and detection algorithms need to be investigated to
mitigate these side effects.

Regulatory Compliance. The systems that use artificial
MKs should consider carefully any conditions regarding the
environment. The adopted VOCs in the industrial environment
should meet safety constraints and do not affect the production
quality. Regarding the usage in public areas, the circulated
air should be suitable for humans without causing any health
problems.

Scalability. Implementing the system on a large-scale re-
quires considering the design of long MKs, which needs
using appropriate system components, protocol design, and
detection algorithms. Also, accommodating multiple receiver
and enabling the broadcasting feature are important feature
that requires careful consideration such as different range and
directions.

III. SYSTEM OVERVIEW

This section gives an overview of the proposed prototype
and associated system architecture used to generate and detect
the MKs. As shown in Fig. 1, we show the system components,
including the transmitter, receiver, modulation, as well as
system testing to identify range limits.

Fig. 1: The MKs generation and detection prototype.

A. Transmitter and Receiver

We build the transmitter as a programmed VOC sprayer
consisting of a mechanical sprayer connected to a small motor
through gears. An MK is transmitted by the sprayer using a
custom script on a connected Raspberry Pi that controls a
motor via relays. Commodity air freshener cans can be used
as VOC source, where Ethanol is the main component of the
ingredients list. The motor rotates and presses the can for
a certain amount of time to release some VOC molecules,
then rotates reversely to stop releasing. The Raspberry Pi
connectivity and flexibility is the key to manipulate the MKs
generator via a remote connection. We use a photoionization
VOC detector at the receiver side to measure the VOC con-
centration. This detector can detect a large spectrum of VOCs



in a relatively short time (as fast as 1 sample per second)
with a wide range of detection from 0.1 ppm to 5000 ppm.
As a continuous stream of readings, the VOC concentration
data can then be stored and retrieved from the detector for
processing.

We built the whole system in a room with minimal human
activity during the experiment, without any natural or artificial
airflows. The distance and the alignment between the sprayer’s
sprinkler and the detector’s nozzle can be adjusted.

B. Molecular Key Modulation

The MKs consist of a repeated sequence of ones and zeros
modulated using the on-off keying scheme, where the sprayer
is turned on only during the transmission of bit “1" duration. In
the following, we design the system to generate 8 keys using
3 bits; however, an extended version while using more bits
is also possible. To overcome the high system memory and
slow propagation, as well as reducing the need for external
synchronization between the transmitter and receiver, a simple
communication protocol is used, as shown in Fig. 2. A pilot bit
of “1" is prepended to the bit sequence to indicate the start of
transmission. The bit duration tbit is assumed to be known at
both ends. The transmitted symbol conatins the pilot bit and
three key bits, which are periodically repeated after waiting
idle period tidle to minimize the inter-symbol interference.

Fig. 2: Modulation of the key 101

At the receiver side, the receiver operates under three states:
idle, waiting, and receiving, as illustrated in Fig. 3. The
receiving procedure starts at the idle state, monitoring the
VOC concentration and looking for a drastic change to detect
the pilot bit, which comes after some silence time that is
greater than or equal to tidle by comparing the difference of
current reading and the average reading of last 5 seconds to a
predefined threshold. Then, it transits into a waiting state for
a bit interval (tbit) till the end of the pilot bit duration. After
that, the receiver transits into a receiving state, in which it
records the received VOC concentration for a symbol interval
(tsymbol) to detect the transmitted key. After the transmission
finishes, the receiver goes back to the idle state, and the VOC
concentration segments are sent into a classification model to
recover the transmitted bits.

C. System Testing

To assess the MK generation and detection system under
the limited aerosol transmission channel, we conduct several
experiments to define the system operating conditions and
identify the limitations. The limitations mainly come from 2

Fig. 3: Receiver state transition.

aspects, signal strength and interference, as can be observed
from the following experiments.

Observed VOC Concentration. We start by studying the
VOC concentration observed at the receiver side after sending
the key “101" as shown in Fig. 4. Despite the short VOC
release press time, the received pulse width is wider than the
press time due to the dispersion nature of the aerosol channel.
The transmitted bits appear some spikes that can be identified
and recognized as depicted in Fig. 4. Other fluctuations are
due to environmental noises and channel turbulence. The
previously mentioned reasons motivate us to reserve enough
time between bit pressing time slots and also between the
symbols, i.e., tidle, to reduce the interference between adjacent
bits and symbols.

Fig. 4: Received VOC concentration of key 101.

Impact of Distance. We send the key “111" with the
sprayer and the detector aligned and measure the received
signal strength in terms of the average VOC concentration
versus different transmission range as shown in Fig. 5. We
observe relatively high concentration measurements for small
distances, allowing the keys to be detected efficiently. As the
receiver moves further away, the measured VOC concentration
decreases significantly due to the diffusion nature of the
aerosol channel and the corresponding signal loss with the
distance. According to the depicted results in Fig. 5 and the
noise levels in Fig. 4, the adopted setup can operate satisfacto-
rily for distances up to 1.5 m. However, at longer distances, the
slow diffusion of the aerosol channel results in low values of
received concentration compared to the environmental noise;
thus, individual spikes may not be observed while the decoding
is hardly possible.

Impact of Alignment. To understand the impact of align-
ment, we consider different angles between the spraying
direction and the receiver at a distance of 0.7 m, using the



Fig. 5: Effect of distance on VOC concentration.

same key “111". The value of angle quantifies the deviation
of alignment. Since the released VOC mostly exists along
the nozzle axis, the amount of VOC arrived at the detector
decreases as the angle increases. Based on the results in Fig. 6
and the noise level shown in Fig. 4, the system can maintain
a relatively good signal level within 20◦ angles range.

Fig. 6: Effect of alignment on VOC concentration.

IV. PROBLEM DESCRIPTION

After generating different MKs and recording the VOC con-
centration at different time instants, the main problem becomes
recovering these keys from the detected VOC concentration
readings, similar to the depicted one in Fig. 4. The recovery
process is done via two steps: First, segmenting the readings
then, decoding the data.

Segmentation. After getting the VOC concentration read-
ings for a time span of T timesteps, y1, y2, . . . , yT , we isolate
the reading segment, Y, related to the key. The elements of
Y are Yk[j], which represents the readings on j-th timestep
of the k-th bit in the sequence.

Decoding. To decode Y data into the estimated key bits, we
consider it a classification problem under variable channel and
noise conditions. We perform the classification using learning
algorithms that need extensive experimental training phases.
Multiple classification models in ML can be applied to this
problem, but some of them require larger dataset for better
generalization. To address this problem efficiently, we first
model the received bit concentration function based on several
experimental measurements in the following section. Then,
we use the model to generate a simulated dataset and train
different classification learning models in Section 5.

V. VOC CONCENTRATION MODELING

In this section, we model the received VOC concentration
by fitting theoretical models to our experimental data. We use
the model proposed in [8] that has shown to be suitable for
molecular channel characteristics.

Modeling Single Release. The received VOC concentration
of a single transmitted pulse is modeled as a function in the
time t as [8],

λ(t) =

{
κ
√

c
2πt3 exp

[
− c(t−µ)2

2µ2t

]
t > 0

0 t ≤ 0
(1)

where κ is a proportionality constant, c and µ are channel
parameter, which can be found by fitting the curve to experi-
mental data.

Fitting Single Release. To find κ, c and µ, we conducted
30 single-release experiments for aligned sprayer and detector
while allow an idle time of 120 seconds between consecutive
presses to avoid signal interference. Then, we use a simulated
annealing algorithm (implemented in [9]) to fit the parame-
ters, by minimizing root-mean-square error (RMSE) between
values predicted by the model and the experiment, over the
time length 45 seconds at a sampling rate of 1 sample/sec.
The parameters are found to be: κ = 408, c = 71.2 and
µ = 11.9. Fig. 7 shows the 30 received signal of single press
versus time overlayed on the fitted model, which verifies the
good approximation.

Fig. 7: Comparison between several measurements of the
received single release pulse and the adopted model.

Modeling Sequence Release. Following the fitted model
for the single release, we model the stream of molecular bits
and develop an appropriate model. The summation of delayed
versions of λ(t) follows a Poisson distribution [8]; thus, the
distribution of the received VOC concentration is written as,

Yk[j] ∼ P

(
k∑

i=0

xk−iλi[j] + η

)
(2)

where η represents an independent additive Poisson noise
coming from background or the receiver, P(ξ) = ξye−ξ

y! is the
Poisson distribution function with a parameter ξ and y is the
measured value. By interpreting the parameter ξ as the amount
of VOC molecules in the air near the detector, sampling
from the Poisson distribution simulates the measuring of
VOC concentration since Poisson distribution describes the



probability of random events happening in a given time, and
molecule being captured by the detector is such an event. λi[j]
is the response at the j-th timestep of the current bit due to
the i-th bit in the transmission and is expressed as

λi[j] = λ(
i · ω · tbit + j

ω
) (3)

with ω denoting the sampling rate.

VI. RETRIEVING MOLECULAR KEYS

In this section, we detail the implementation of the keys
decoding process from the received VOC concentrations using
the previously discussed channel characterization simulation
model. Covering all possible fluctuations by experiments
would be impossible; thus, the simulated dataset helps the de-
coding models access plenty of generalized results. By viewing
the decoding problem as a time series classification problem,
various model configurations can be built using different
models, normalization, and feature engineering techniques.

Building Simulation Dataset. We developed a customized
script to simulate the transmission of different keys sequences
considering randomization of time alignment, concentration
amplitude, and environmental noises to simulate the VOC
diffusion more realistically. To this end, we created a simulated
dataset of size 10000 and adopted the segmentation procedure
to capture the key sequence information.

Normalization and Feature Engineering. Before pro-
cessing the received data, it is necessary to normalize them
to improve the predictability and robustness. We use two
normalization methods: the Z-normalization, which normalizes
the data to have zero-mean and unity standard deviation values,
and the min-max normalization, which normalizes the data
between 0 and 1. Regarding feature engineering, we use two
techniques: slope, which calculates the difference between
each time step, and summary, which computes different statis-
tics, as the maximum, minimum, variance, median, and mean.

Methods. As a univariate time series classification problem,
several ML classification methods are applicable. All these
methods can be categorized considering two perspectives, as
shown in Table I. Firstly, the methods can be classified as
to whether DL can be involved or just classic ML. Secondly,
they can be classified according to whether the time semantic
is preserved or not, i.e., whether the input is seen as a pure
vector or a time series.

TABLE I: Methods Summary

Preserve
Time Semantic

Discard
Time Semantic

Classic
ML

TS-KNN1

TS-Forest2

RISE3

KNN [10]*
SVM [11]*
Naive Bayes*
Decision Tree*
Random Forest*

Deep
Learning

CNN (FCN/ResNet 4)*
RNN (LSTM [12]/GRU [13] )*
BiRNN [14] (LSTM/GRU)*

MLP [15] *

Here are some additional explanations to Table I:
• CNN is classified as "Keep Time Semantic" as it per-

forms convolution along the time axis, thus retaining the
sequence nature of a time series.

• For Bidirectional RNNs, a variant using 3 Bidirectional
layers (denoted by “3Bi") is also tried.

• For MLP and CNN Methods, the implementation is based
on a review paper by H. Fawaz etal [20]. CNN methods
are chosen as the top 3 ranked methods according to their
pairwise ranking on univariate time series classification.

For the methods with an asterisk, besides directly taking
the time series as input, a variant which takes both the input
sequence and its summary (as described in Feature Engineer-
ing) is also tried. For Classic ML methods, the summary is
simply concatenated along with the input sequence. For DL
methods, the summary is inputted as another branch, which
first passes 2 fully connected layers, then a dropout layer,
finally concatenated with the output from the sequence branch,
before the final fully connected layer and the output layer, as
shown in Fig. 8.

Fig. 8: Classification models with and without summary.

Training. To make a fair comparison, most models are
trained in the same fashion:

• Classic ML methods: First run a grid search with 5-fold
cross validation on the simulated dataset to find the best
parameters, then the model is trained using the whole
simulated dataset and tested on the real dataset.

• DL methods: All models use an Adam optimizer with a
learning rate of 1e-3. Models can be trained at most 200
epochs on the simulated dataset, but an early stop callback
is registered on the validation loss (validation set taken
from simulated dataset), so the training will stop if the
loss does not decrease in 10 epochs.

Some specific measures are used when the general training
methods do not work well, as stated below.

• For Time Series ML methods, running grid search with 5-
fold CV takes a long time, so only 10% of the simulated
dataset for this stage. Later the model is still trained using
the whole simulated dataset to find the best parameters.

• For FCN in CNN, AdaDelta optimizer is used instead of
Adam [20].

1Time series KNN with dynamic time warping (DTW) [16].
2Time Series Forest, [17] [16].
3Random Interval Spectral Ensemble, [18] [16].
4Fully convolutional neural network & relatively deep residual net-

work [19].



TABLE II: Top 5 Methods

Rank ML/DL Method Normalization Feature Engineering Simulated Dataset Sequence Release Dataset
Slope Summary Accuracy Weighted F1 Accuracy Weighted F1

1 DL BiLSTM none ✓ 0.974 0.975 0.864 0.868
2 DL 3BiGRU znorm ✓ ✓ 0.978 0.978 0.818 0.818
3 ML NaiveBayes none ✓ 0.658 0.661 0.818 0.816
4 ML kNN none 0.980 0.980 0.818 0.814
5 DL GRU minmax ✓ ✓ 0.973 0.973 0.795 0.790

VII. SYSTEM PERFORMANCE EVALUATION

In this section, we evaluate the decoding performance of
different classification learning methods using experimentally
measured data to find the best methods. We use two metrics
known as accuracy and class-weighted F1, which are suitable
for our multi-class classification problem. The accuracy is
defined as the percentage of correct predictions on all pre-
dictions. While the class-weighted F1 is the sum of F1 scores
in each class weighted by the class size that is expressed as,

Class Weighted F1 =

C∑
i=0

Ni

N
F1i, (4)

where C denotes the number of classes, N denotes the records
number, Ni denotes the records number in the class i, and F1i
denotes the F1 value of the class i, which is found from

F1 = 2× Precision × Recall
Precision + Recall

(5)

where the precision and recall are computed using true positive
(TP), false positive (FP) and false negative (FN) as,

Precision =
TP

TP + FP
Recall =

TP
TP + FN

. (6)

We use the sprayer to transmit all possible 3-bit digital
sequences, i.e., from 000 to 111, following the modulation
and protocol defined previously. After receiving the data at
the detector side, the corresponding segments are isolated
for each bit sequence, and then different ML classification
methods are tested on 44 segments. To quantify the perfor-
mance of different ML classification methods, we computed
the accuracy and weighted F1 metric for all methods using
different normalization and feature engineering. Table II lists
the best 5 methods while showing the adopted normalization
and feature engineering. Among all methods, the Single Layer
Bidirectional LSTM achieves the highest accuracy of 0.864.

VIII. CONCLUSION

This work considered an authentication factor utilizing MC,
named MK to be adopted for authentication and authorization
in IoT systems. Compared to traditional authentication factors,
using molecules as carrier enables authentication process to
interact with physical world easier, creating new possibilities
and providing more flexibility to designing industrial security
systems. A prototype was built to show the feasibility of
purposed system, using a sprayer the transmitter and a VOC
detector as the receiver. Different ML and DL techniques were
considered for recovering the bits transmitted from the VOC
concentration reading stream. Advantages and current limi-
tations are discussed, with potential applications in multiple
domains.
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